Minimal silting modules and ring extensions

نویسندگان

چکیده

Ring epimorphisms often induce silting modules and cosilting modules, termed minimal or cosilting. The aim of this paper is twofold. Firstly, we determine the tilting cotilting over a tame hereditary algebra. In particular, show that large module if only it has an adic as direct summand. Secondly, discuss behavior minimality under ring extensions. We commutative noetherian extend to along any flat epimorphism. Similar results are obtained for rings small homological dimension.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

dedekind modules and dimension of modules

در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...

15 صفحه اول

Totally reflexive extensions and modules

Article history: Received 23 August 2012 Available online xxxx Communicated by Luchezar L. Avramov MSC: 16G50 13B02 16E65

متن کامل

Extensions of Rational Modules

For a coalgebraC , the rational functor Rat(−) : C∗ → C∗ is a left exact preradical whose associated linear topology is the family C , consisting of all closed and cofinite right ideals of C∗. It was proved by Radford (1973) that if C is right Noetherian (which means that every I ∈ C is finitely generated), then Rat(−) is a radical. We show that the converse follows if C1, the second term of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China-mathematics

سال: 2021

ISSN: ['1674-7283', '1869-1862']

DOI: https://doi.org/10.1007/s11425-020-1898-6